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Abstract

This paper investigates the problem of characterizing the signature of a time pattern in safe acyclic
time Petri nets. While such signature contains an infinite number of elements because time is contin-
uous, we propose a method to represent these elements as finite sets of constraints on the observable
dates of firing of the observable transitions of the net.

1 Introduction
The study of systems requires the ability to differentiate between the different operating modes (critical,
safety modes, failures, etc.). For this purpose, the signature of an operating mode is a relevant tool to
know the observation resulting from the execution of the so called operating mode. It can be especially
helpful in case of diagnosability, opacity or predictability analyses as it is a way to characterize the
executions of the system [1], [2]. In discrete event systems, an operating mode is usually associated
with the occurrence of a particular event (like a fault event switching the system from a normal mode
to a failure mode). The signature is in this case the set of observable traces, i.e. the set of observations
produced by the system in which the non-observable event of interest has occurred. More complex
behavioural modes can be represented by a sequence of particular non-observable events [3]. Indeed,
some behaviours of interest may only result from a succession of events which, taken independently,
are not of interest. Such sequences of non-observable events are called pattern. These patterns can be
atemporal as in [3],[4] where time only evolves with the occurrence of events, or they can be temporal,
as introduced more recently in [5], in which case events are associated with quantitative firing time
intervals. In this paper, the objective is to propose a formal characterization of the signature of temporal
sequence patterns in systems that can be modeled by a specific class of time Petri nets. As time is a
continuous quantity, the signature contains an infinite number of elements. This leads to a real problem
in using the signature for further analyses of pattern such as diagnosability analyses. To solve this
problem, given a system and a pattern as previously defined, the objective is to formally characterize
the pattern signature by a finite set of constraints on the firing dates of the observable transitions of the
system i.e. on the occurrence dates of the observable events that the system may produce when the
pattern occurs.

In this paper, the formal characterization of a time pattern signature that we propose is based on the
following assumptions. The considered systems and patterns are modelled by acyclic safe time Petri
nets. The patterns are defined by unobservable events produced by the system. Finally, the pattern
signature is formally characterized as finite sets of observable constraints only.

The paper is organized as follows. Section 2 recalls some formal prerequisites. Then the modeling of
the problem and the characterization method are presented in Section 3. The synchronization method is
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described in Section 4. Section 5 develops the method to transform the synchronisation into observable
contraints. Finally the characterization of the signature is given in Section 6.

2 Prerequisites
This section recalls some formal prerequisites on Time Petri Nets (TPN).

Definition 1. A Labeled Time Petri Net (LTPN) is a 6-uple N = 〈P, T,A,Σ, `, Is〉 where:

• P is a finite set of places

• T is a finite set of transitions (P ∩ T = ∅)

• A ⊆ (P × T ) ∪ (T × P ) is a binary relation that models the arcs between the places and the
transitions.

• Σ is a finite set of transition labels

• `: T → Σ is the transition labelling function

• Is: T → IQ+
is a static closed interval function Is(t) = [a, b], its lower bound, also called the

date of earlier firing is denoted bIs(t)c, and its upper bound, also called the date of later firing,
is denoted dIs(t)e

The preset of a transition t is the set of input places pre(t) = {p ∈ P | (p, t) ∈ A}, and similarly
the postset of t is the set of output places post(t) = {p ∈ P | (t, p) ∈ A}. For a safe LTPN, a state is
a couple S = 〈M, I〉 where M is the marking of the net (M : P → {0, 1}) and I is the partial firing
interval application (I: T → IQ+

) that associates to any enabled transition (i.e. a transition t for which
∀p ∈ pre(t),M(p) > 0) a time interval of Q+ in which t can be fired. S0 = 〈M0, I0〉 is the initial state
of the net where M0 is the initial marking of the net and I0 is defined as follows: for any transition t
enabled by M0, I0(t) = Is(t), else I0(t) = 0. For a marking M , a transition t is firable at the date θ if
and only if:

• t is enabled

• θ ∈ I(t) and for all t′ enabled by M, θ ≤ dI(t′)e

The fire of a transition t at a date θ is denoted: 〈M, I〉 θt−→ 〈M ′, I ′〉 and defined such that

• M ′ is such that ∀p ∈ pre(t) \ post(t),M ′(p) = 0, ∀p ∈ post(t) \ pre(t), M ′(p) = 1 else
M ′(p) = M(p)

• for any transition t′ ∈ T (t′ 6= t) enabled byM and still enabled byM ′, I(t′) = [a, b]⇒ I ′(t′) =
[max(0, a− θ), b− θ]

• for every transition t′ enabled by M ′ and not by M , I ′(t′) = Is(t
′)

The set of final markings is denoted Q. A state S is reachable in a marked LTPN if there exists a run
r = θ1t1 . . . θntn, n ∈ N∗ such that S0

θ1t1−−→ S1
θ2t2−−→ S2 . . .

θntn−−−→ S. The set of reachable states of a
LTPN N is denoted R(N,S0).

A run r = θ1t1 . . . θntn of a LTPN is said to be admissible if there exist S1, . . . Sn reachable states
of N such that S0

θ1t1−−→ S1
θ2t2−−→ S2 . . .

θntn−−−→ Sn.
A timed sequence over an alphabet Σ is a sequence of pairs (d, e) ∈ R+ × Σ where d corresponds

to the date of firing of symbol e. A run produces a unique timed sequence.
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Example 1. Let us consider the alphabet Σ = {a, b}. ρ = 2a.3b.2a.2b is a timed sequence over Σ.

Definition 2. The language L(N) of a LTPNN is composed of every timed sequence ρ = θ1e1 . . . θnen
produced by an admissible run r = θ1t1 . . . θntn and ∀i ∈ [1, n], `(ti) = ei for the LTPN N , leading
from the initial state S0 to a final state S = 〈M, I〉 ∧M ∈ Q.

The projection on a set of transitions T is such that:

• if r = θ1t1 . . . θntn, PT (r) = PT ((θ1 + θ2)t2 . . . θntn) if t1 /∈ T

• if r = θ1t1 . . . θntn, PT (r) = θ1t1.PT (θ2t2 . . . θntn) if t1 ∈ T

• if r = θt, PT (r) = ε if t /∈ T

[6] defines the State Class Graph (SCG) of a TPN. It can be seen as an automaton that abstracts
every behaviour of the TPN. A state of this automaton is a class of the TPN, containing a marking and
a firing domain for every transition enabled by the marking. The initial firing domain is given by I0 for
every transition t enabled by M0. It is an abstraction aggregating every state of the TPN sharing the
same marking and a close firing domain.

Definition 3. The State Class Graph (SCG) of a LTPNN = 〈P, T,A,Σ, `, Is〉 is the 3-tuple (C,α0,→)
such that:

• α0 = (M0, F0) where M0 is the initial marking of N and F0 ∈ (R2
+)T is the initial firing domain

of N

• C ∈ {0, 1}P × (R2
+)T is the set of all classes corresponding to states reachable in N

• →∈ C × T × C is the transition function defined as follows : (M,F )
t−→ (M ′, F ′) iff

– t is firable from (M,F )

– M ′ = M − pre(t) + post(t)

– F ′ = next(F, t)

where next : RT × T → RT is the procedure to build the firing domain F ′ associated with a
reachable marking M ′ reached from M by the firing of t that is defined as follows:

1. for each transition t′ enabled in M , compute the firing of t by adding the two constraints θ ≤ θ′

and θ′ = θ + θ′upd (θ′upd is a substitution variable)

2. eliminate variables relative to transitions enabled in M and not in M ′

3. add the constraints relative to the newly enabled transitions (in M ′)

4. determine the canonical form of each constraint in F ′

All along this paper, a path in the SCG of a LTPN N is a sequence of transition from the initial class C0

to a class Cn associated with a final marking of the net.
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Figure 1: Θ1 is a system composed of two behaviours : one is sequential (final marking P11) and one has concur-
rency (final marking P8 P11)

3 System and Pattern modeling

3.1 System and Pattern modeling
A system is a safe LTPN Θ = 〈PΘ, TΘ, AΘ,ΣΘ, `Θ, IsΘ〉 that is partially observable. Some labels
represent observable events (ΣoΘ = {o1, ..., op}) others correspond to unobservable events (ΣuΘ =
{uo1, ..., uom}). The transition set is partitioned into two sets: ToΘ the set of observable transitions
(their label belongs to ΣoΘ) and TuΘ the set of unobservable ones (their label belongs to ΣuΘ). Two
assumptions are made about the system:

- A0 The system is acyclic

- A1 Every transition to reach a final state of Θ belongs to ToΘ (it is labelled by an event of ΣoΘ).

A0 forbids an infinite number of transition firings in a finite amount of time. It also ensures that every
run of the system is finite. Let us denote QΘ the set of final markings of Θ. A1 ensures that a final
marking is always reached by the firing of an observable transition.

Example 2. Figure 1 represents a system Θ1. The observable transitions (colored in blue) are
t1, t2, t3, t4 and t5 labeled by the events o1, o2, o3, o2 and o3 respectively. The unobservable transi-
tions (colored in red) are tuo1, tuo2, tuo3, tuo4, tp1

and tp2
, labeled by uo1, uo2, uo3, uo4, f1 and f2.

Transition t1 is enabled when there is a token in P1 (i.e. after the firing of tuo1) and can be fired
between 1 and 6 time units (tu) after its enabling.

Definition 4. A timed pattern is an acyclic safe LTPN 〈PΩ, TΩ, AΩ,ΣΩ, `Ω, IsΩ〉 without parallelism
(i.e. ∀ t and t’ ∈ TΩ, such that pre(t) ∩ pre(t′) = ∅, t and t’ are not enabled simultaneously) where:

1. ΣΩ ⊆ ΣuΘ

2. M0Ω /∈ QΩ (with M0Ω and QΩ respectively the initial marking and the set of final markings of
Ω)

3. for every marking M reachable in Ω, there exists M ′ reachable from M such that M ′ ∈ QΩ

4
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4. from any reachable marking M , there is no event f ∈ ΣΩ labelling more than one enabled
transition

5. every run starting from a marking of QΩ necessarily leads to a marking of QΩ

Pt1

tp1′

f1

[6, 9]

Pt2

tp2′

f2

[4, 9]

Pt3

Figure 2: Ω1 a pattern on Θ1. Its final marking is Pt3 = 1.

Time patterns represent unobservable behaviours (condition 1). In this work the study is restricted
to pattern that does not contain parallelism. Condition 2 ensures that the language of a pattern does
not contain the empty sequence i.e the pattern does not represent empty event sequences. Condition 3
ensures any run of the pattern is a prefix of a run for which the pattern is recognized. The patterns are
deterministic (condition 4). Finally condition 5 ensures that the execution of the pattern is definitive.

Example 3. Figure 2 gives an example of timed pattern Ω1 on Θ1 of Figure 1. The transitions t′p1

and t′p2
share their label with tp1 and tp2 . Back to the notion of admissible run, the run 6t′p1

.7t′p2
is

admissible for Ω1. It produces the timed sequence ρ1 = 6f1.7f2 .

As a pattern is unobservable, its signature is given by the observable events that may be produced
by the system when the pattern occurs. The pattern signature is then directly related to the (observable)
executions of the system for which the pattern has occurred. The identification of such executions is
formulated as a pattern-matching problem similarly to the one defined in [7]. Briefly speaking a system
run matches a pattern Ω if it generates a word ρ that contains, as a subword, one of the words of Ω. For
the sake of simplicity, it is said that a run matches a pattern if this run produces a timed sequence of
L(Θ) that matches this pattern.

Definition 5. A timed sequence ρ ∈ L(Θ) is matching Ω (denoted ρ c Ω) if there exists a subword

ρ′ = (
j1∑
i=1

θi)ej1 . . . (
jk∑

i=jk−1+1

θi)ejk of ρ such that ρ′ ∈ L(Ω).

Based on this matching notion the signature is defined as follows:

Definition 6. Sig(Ω) = {PΣoΘ
(ρ)|ρ ∈ L(Θ) ∧ ρ c Ω}

In other words Sig(Ω) contains every observable trace (PΣoΘ
(ρ) of every timed sequence ρ) of Θ

(i.e ρ ∈ L(Θ)) that matches Ω (ρ c Ω).

Example 4. The run r1 = 2tuo1
.2t1.4tp1

.2tuo2
.3tp2

.3tuo3
.2t2.2t3 is an admissible run for Θ1. It

produces the timed sequence ρ1 = 2uo1.2o1.4f1.2uo2.3f2.3uo3.2o2.2o3. ρ′ = 8f1.5f2, ρ′ is a subword
of ρ1, and ρ′ ∈ L(Ω1), so ρ1 c Ω1.

3.2 Characterization of a pattern signature
This approach that investigates the use of the SCGs relies on two main steps:

1. The first step is to express the behaviours of the system for which the pattern occurs as sets of two
different types of constraints (Section 4):

5
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p1

t0 [1, 3]

p0

p3

t1 [1, 3]

p2

Figure 3: LTPN illustrating the problem of parallelism for a run of the SCG to be admissible for the system

• the constraints of admissibility, i.e. the constraints a system run must satisfy to be admissi-
ble. These constraints are obtained for every path of the system SCG taking into account the
influence of each possible firing sequence on the other sequences (Section 4.1.)

• the constraints of synchronisation (Section 4.2), i.e. constraints that represent the different
ways the system matches Ω on each path of the system SCG. For each of these ways, the
path is reduced to the observable transitions and to the unobservable transitions involved
in the pattern recognition (Section 4.2.1). Then the path is cut into blocks (Section 4.2.2)
which are synchronized with the transitions of the pattern (Section 4.2.3)

2. The second step aims to express the constraints on firing dates of unobservable transitions of the
system into constraints on the firing dates of observable ones (Section 5)

4 Pattern occurrences expressed as sets of constraints
The State Class Graph (SCG) is an abstraction of a Time Petri net that contains every behaviour of the
system. Every sequence of transitions leading from the initial class to a final class (called a path in the
rest of this document) is a sequence for which there exists at least a corresponding run of the system.
The objective of this step is to extract from the SCG the runs of the system that are not only admissible
but also that match the pattern. For this, the idea is to add additional time constraints on the firing dates
of the transitions involved in the runs to guarantee these two requested characteristics.

4.1 Constraints of admissibility of a run of the system
From the different paths of the SCG it is possible to extract the runs of the system. Nevertheless, an
extracted run may be a non admissible run due to the parallel behaviours in the Petri net. Therefore, it
is necessary to add constraints on the transitions that are in parallel to take into account the influence of
the firing of one transition on the others. Such constraints are called admissibility constraints.

Example 5. Figure 3 shows a system with parallelism. Its SCG has 4 classes : C0 (P0P2, 1 ≤ t0 ≤
3, 1 ≤ t1 ≤ 3), C1 (P1P2, 0 ≤ t1 ≤ 2), C2 (P0P3, 1 ≤ t1 ≤ 2) andC3 (P1P3). The run 3t0.2t1 satisfies
the firing domains of the SCG but is not admissible as if t0 is fired at date 3, t1 cannot be fired 2 time
units after. An admissible run must also satisfy the following admissibility constraint 1 ≤ t0 + t1 ≤ 3.

Definition 7. An admissibility constraint on a transition tm, for a run r = θ1t1, · · · , θktk, · · · , θmtm,

is a constraint bI(tm)c ≤
m∑

j=k+1

dj ≤ dI(tm)e where the variables dj are the firing dates of transitions

tj (j = k + 1, · · · ,m ), and dk the enabling date of the transition tm due to the firing of tk at dk.

6
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It leads to Proposition 1:

Proposition 1. A run r of Θ is admissible if and only if it satisfies the constraints of the SCG and the
admissibility constraints of the path from which this run is extracted.

.

Example 6. From the net given Figure 1 let us consider the path π1: [1, 4]tuo1
.[1, 6]t1. [3, 7]tp1

.
[1, 2]tuo2

. [2, 4]tp2
.[1, 4]t2.[0, 1]tuo3

.[1, 2]t3. tuo3
is enabled after the firing of tuo2

and fired after tp2
.

The admissibility constraint concerning tuo3
will be 2 ≤ dp2

+ d2 + duo3
≤ 4.

4.2 Constraints of synchronisation of an admissible run with the pattern
4.2.1 Reduction of the paths

As previously said the constraints of synchronization represent the different ways the system matches
a pattern, by taking into account the different paths in the SCG. Each path is defined by a sequence of
transitions with their corresponding firing intervals.

On a given path, it is possible that the system matches several times the pattern. In the remainder it
is considered that the matching of a pattern on a path is the first to occur in a run, i.e. if the pattern can
be recognized multiple times in a run, but only the first recognition is considered.

The algorithm to capture this first matching is not presented here but is inspired from the chronicle
recognition algorithm of [8]. Briefly, the algorithm explores the path and the pattern in parallel as binary
trees also called assumptions trees. For each transition examined in a path there are three cases: (1) a
transition with the same label is necessarily fired in the pattern, in such cases the algorithm explores the
next transition of the pattern. (2) The transition may fire in the pattern for certain dates but not for every
possible ones. In such cases the algorithm splits the exploration into two branches, one for which the
algorithm considers the transition has been fired in the pattern, and another one for which it considers
that the transition has not been fired yet. (3) The transition analysed in the path of the system path
cannot be fired in the pattern thus the algorithm goes to the next transition in the path without evolving
in the pattern exploration. At the end the algorithm returns the different paths of the SCG for which
there exists a run that matches Ω. Note that, every path in the SCG of a system following assumption
A0 is finite, and the SCG contains a finite number of paths.

The paths matching the pattern are extracted from the SCG of the system and then can include
observable transitions but also unobservable transitions. The next step is then to reduce this path by
projection to the observable transitions and to the unobservable transitions involved into the execution
of the pattern. The firing intervals of the transitions in the projected sequence are updated to take into
account the projection in a way inspired by [9].

Example 7. Let us consider the path π5 = [1, 4]tuo1.[1, 6]t1.[3, 7]tp1 . [1, 2]tuo2.[2, 4]tuo3. [0, 2]tp2 .
[0, 2]t3. [0, 4]t2 which is a path of the SCG of Θ1. Its admissibility constraints are {2 ≤ du3

+ dp2
≤

4, 1 ≤ dp2
+ d3 ≤ 2, 1 ≤ d2 + d3 ≤ 4}. The run 3tuo1.2t1.3tp1

.2tuo2. 2tuo3.1tp2
. 2t3.1t2 matches

the pattern Ω1. The projection of π5 onto the set of transitions Tproj = {t1, t2, t3, tp1
, tp2
} is given by:

PTproj (π5) = t1.tp1 .tp2 .t3.t2.
The classes visited following π5 are C0(M : P0, D0 : 1 ≤ tuo1 ≤ 4), C1 (M : P1, D1 : 1 ≤

t1 ≤ 6), C2 (M : P2, D2 : 3 ≤ tp1
≤ 7), C3 (M : P3, D3 : 1 ≤ tuo2 ≤ 2, 1 ≤ tuo4 ≤ 3), C4

(M : P4 ∗ P6, D4 : 2 ≤ tp2
≤ 4, 2 ≤ tuo3 ≤ 4), C7 (M : P4 ∗ P7, D7 : 1 ≤ t3 ≤ 2, 0 ≤ tp2

≤ 2),
C12 (M : P5 ∗ P7, D12 : 1 ≤ t2 ≤ 4, 0 ≤ t3 ≤ 2) and C19 (M : P11 ∗ P5, D19 : 0 ≤ t2 ≤ 4).

In the reduced path obtained by projection of π5, the first projected transition to be fired is t1. In π5,
t1 is fired after tuo1. The firing observable interval for t1 becomes then [2,10]. The firing interval of the
next transition of the reduced path (tp1

) is unchanged as it is involved in the execution of Ω as its first

7
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event. Next, the firing of tp2 follows the firing of tuo2 and tuo3 in π5. To calculate the new firing interval
of tp2

after the projection, the variables yuo2, yuo3 and yp2 are associated respectively with tuo2, tuo3
and tp2

such that: 
1 ≤ yuo2 ≤ 2

2 ≤ yuo3 − yuo2 ≤ 4

2 ≤ yp2 − yuo2 ≤ 4

yp2 − yuo3 ≤ 2

(1)

The first equation indicates that tuo2 is fired between 1 and 2 tu after the firing of tp1 according to
C3. The second one models that tuo3 is fired between 2 and 4 tu after the firing of tuo2 and the third
one does the same for tp2

according to C4. Then the last one models the firing of tp2
after tuo3 and the

concurrency between these two transitions. The solution of this system of inequations is 3 ≤ yp2 ≤ 6,
so [3,6] is the new firing interval of tp2 . Finally concurrency between t3 and t2 does not change their
firing intervals, and the new intervals are [0,2] and [0,4] respectively.

The projection of the path π5 gives then the reduced path π = [2, 10]t1.[3, 7]tp1
. [3, 6]tp2

.
[0, 2]t3.[0, 4]t2.

4.2.2 Partitioning of a path

The partitioning aims to highlight the different synchronization points in terms of transitions between
two paths. In this study the partitioning is applied on both types of reduced paths: those issued from the
SCG of the system and those extracted from the SCG of the pattern, in both cases using the reduction
step presented in Section 4.2.1.

Let us consider two paths π and π′ such that π c π′ (π matches π′, i.e. there exists a run r of π
such that r c π′). In order to synchronize both paths, they are partitioned into blocks. The split into
blocks is guided by the (unobservable) transitions that must be synchronized i.e transitions sharing the
same labels in π and π′.

Definition 8. A block w is a sequence of pairs (I, t) ∈ IQ+
× T where T is a set of transitions.

Following the splitting principle two types of blocks are considered:

1. Type 1: blocks for which only the last transition of the block is an unobservable transition that
must be synchronized. It is possible that the block contains only such a transition.

2. Type 2: blocks for which every transition is observable

The partitioning of a path leads for the system’s path to a sequence of n blocks such that the n − 1
first blocks include a set of observable transitions and an unobservable one, or only one unobservable
transition. The nth block, due to assumption A1 contains observable transitions.

Example 8. The partitioning of the reduced path π1 = [2, 10]t1. [3, 7]tp1 .[3, 6]tp2 . [1, 2]t2.[1, 3]t3 is :
w1 = [2, 10]t1.[3, 7]tp1

, w2 = [3, 6]tp2
, w3 = [1, 2]t2.[1, 3]t3.

Simillary the partitioning of π5 is : w1 = [1, 4]tuo1
.[1, 6]t1.[3, 7]tp1

, w2 = [1, 2]tuo2
.[2, 4]tuo3

.[0, 2]tp2
,

w3 = [0, 2]t3.[0, 4]t2.

The same partitioning is applied to every path issued from the SCG of the pattern. The blocks
obtained are all of type 1 and constituted with one couple of firing interval/unobservable transition as
every transition of the pattern is unobservable.

Example 9. For Ω1 only one path is extracted from the SCG of the pattern, and this path is partitioned
into two blocks : w′1 = [6, 9]t′p1

and w′2 = [4, 9]t′p2
.

8



Signature of timed patterns in time Petri nets : a formal characterization Coquand, Subias and Pencolé

4.2.3 Synchronization of two blocks

A block of the system is denoted w and a block of the pattern is denoted w′. Then the partionning of
a path from the system is given by π = w1 . . .wn and the one from the pattern is π′ = w′1 . . .w

′
n−1

(containing one block less due to the last block of π being observable).

• For i < n, every block wi is going to be synchronized with w′i as the last transition of each block
shares the same label.

Proposition 2. The synchronisation of two blocks w = I1t1 . . . Iktk and w′ = IΩtΩ with `(tn) =
`(tΩ), defines the following set of constraints to be satisfied:

∀r = d1t1 . . . dktk ⊆ w, r c IΩtΩ ⇔



d1 ∈ I1

. . .

dk ∈ Ik
k∑
i=1

di ∈ IΩ

(2)

Proof. Let us consider r = d1t1 . . . dktk a run of w = I1t1 . . . Iktk such that ∀i ∈ [1, k], di ∈ Ii
(imposed by the system).

r c IΩtΩ ⇔ ∃d ∈ IΩ | (
k∑
i=1

di)`(tk) = d`(tΩ),⇔
k∑
i=1

di = d

• For i = n (i.e for the last block of π) , because there is no transition to be synchronized as it is
composed of observable transitions, the set of constraints corresponds to the constraints imposed
by the system on its transitions: wn = I1to1

. . . Imtom , {d1 ∈ I1, . . . dm ∈ Im}.

Definition 9. Let’s consider the set of constraints resulting in the synchronization of two blocks de-
fined in Equation 2. The canonical form of this set of constraints, denoted P = {d1 ∈ I ′1, . . . , dk ∈

I ′k,
k∑
i=1

di ∈ I ′Ω} is such that :

• ∀i ∈ [1, k],∀di ∈ I ′i,∃(dj)j∈[1,k],j 6=i ∈ I ′1 × . . .× I ′k \ I ′i such that
k∑
j=1

dj ∈ IΩ

• ∀d ∈ I ′Ω,∃(di)i∈[1,k] ∈ I ′1 × . . .× I ′k such that
k∑
i=1

di = d

The canonical form of the set of constraints resulting in the synchronization of two blocks is consid-
ered in the rest of this work in order to prevent from overapproximation of the signature of Ω.

The constraints of P are called synchronization constraints.

Example 10. The synchronization of w1 = [2, 10]t1.[3, 7]tp1
and w′1 = [6, 9]t′p1

results in P1 = {2 ≤
d1 ≤ 6, 3 ≤ dp1

≤ 7, 6 ≤ d1 + dp1
≤ 9}.

If the considered path π is composed of n blocks (n ∈ N∗), the synchronization with π′ consists of a
sequence of n sets of constraints P1, . . .Pn. A set of constraints defines a polyhedron. The satisfaction
of the sequence of polyhedra (P1, . . .Pn) by a run r is denoted r ⇒ (P1, . . .Pn).

According to the two types of blocks the set of polyhedra can be partitioned into three sets: Co the
set of polyhedra containing constraints on observable transitions, Co∗u the set of polyhedra containing

9
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constraints on observable transitions and one constraint on an unobservable transition and Cu the set
containing only one constraint on an unobservable transition (when there are two constraints one the
same date of an unobservable transition the constraints can be merge into one).

The block partitioning induces that the last polyhedron of the sequence (P1, . . .Pn) contains a
contraint on an observable transition, hence, it is possible to define a so called well-formed sequence of
a resulting from the partitioning step:

Definition 10. (Pi)i∈[1,n] is a well-formed sequence of polyhedra if:

• Pn ∈ Co

• ∀i ∈ [1, n− 1],Pi ∈ Co∗u ∪ Cu

Proposition 3. The sequence of polyhedra resulting from the synchronization of π and π′ is well-formed.

Proposition 3 is true according to the considered partitioning.

5 Translation into observable constraints
The pattern signature contains observable traces. The constraints of admissibility and synchronization
calculated in the previous sections need then to be rewritten to be expressed as observable constraints
i.e constraints on observable dates only. The mechanism of this translation is presented first in the case
of the admissibility constraints. Then it is presented for the synchronisation constraints in the case of
two blocks, and generalized to the case of a path containing n blocks.

5.1 Towards observable admissibility constraints
The following exposes the translation of the admissibility constraints defined in Section 4.1. The aim of
this step is to express the admissibility constraints into contraints on the observable transitions of a path.

Let us consider a path π = I0t0 . . . Ihth.Iiti.Ijtj .Iktk.Iltl....Intn each time interval is relative to
the previous firing date of transition. Let us suppose th, tk and tl being observable transitions and ti,
tj unobservable ones. Ik is relative to the firing date of tj which is relative to the firing date of ti and
so on. That means that the firing date of tk depends on the firing dates of all the previous transitions in
the path π. Therefore, if ti is concerned by an admissibility constraint (i.e α ≤ di ≤ β), the firing date
of tk is impacted. The admissibility constraint α ≤ di ≤ β (di ∈ [α, β]) is then expressed by a new
constraint given by [α′, β′] = [α, β] + Ij + Ik. This corresponds to the translation of the admissibility
constraint into an observable constraint. Same reasoning can be applied if both ti and tj are involved in
the admissibility constraint (α ≤ di + dj ≤ β).

Let us now consider an admissibility constraint on tk and tl: α ≤ dk +dl ≤ β. As tl is relative to tk
which is observable, no change is needed. For tk its firing depends on all the unobservable transitions
fired between th and tk, so the admissibility constraint becomes [α′, β′] = [α, β]+Ii+Ij with (Ii+Ij)
given eventually by an admissibility constraint.

This translation is applied to every admissibility constraint, that leads to a new set of observable
constraints. The set of observable admissibility constraints of a path π is noted Πa.

Example 11. The set of admissible constraints of π5 = [1, 4]tuo1.[1, 6]t1.[3, 7]tp1
. [1, 2]tuo2.[2, 4]tuo3.

[0, 2]tp2
.[0, 2]t3. [0, 4]t2 is {(1)2 ≤ duo3

+ dp2
≤ 4, (2)1 ≤ dp2

+ d3 ≤ 2, (3)1 ≤ d2 + d3 ≤ 4}. Let
us consider the constraint (1). As the transitions of (1) are unobservable, it is deported onto the next
observable transition (t3 in this case), relatively to the previous one (t1 here). Between t1 and t3 the
transitions fired are tp1 , tuo2 , tuo3 and tp2 . Thus the new constraint will be d3 ∈ [α′, β′] = [2, 4]+Ip1 +

10



Signature of timed patterns in time Petri nets : a formal characterization Coquand, Subias and Pencolé

Iuo2 + I3, i.e. d3 ∈ [7, 15]. Let us now consider (2). There is one observable transition involved in (2),
thus the updated constraint will be d3 ∈ [α′, β′] = [1, 2] + Ip1

+ Iuo2
+ Iuo3

, i;e. d3 ∈ [7, 15]. Finally,
when it comes to (3), t2 is relative to t3 so no change is needed. t3 is relative to t1, and so depends on
the firing (as before) of tp1

, tuo2
, tuo3

. As the admissibility constraint (1) gives the new sum of firing
intervals (Iuo3 +Ip2), the new constraint will be (d3+d2) ∈ [α′, β′] = [1, 4]+Ip1 +Iuo2 +(Iuo3 +Ip2),
i.e. (d3 + d2) ∈ [7, 17].

The set of observable admissibility constraints of the path π5 is Πa
5 = {7 ≤ d3 ≤ 15, 7 ≤ d2 +d3 ≤

17}.

5.2 Towards observable synchronization constraints
The aim of this step is to translate the synchronisation constraints into constraints involving only ob-
servable transitions. For this, the firing dates of unobservable transitions that appear in the sets of
synchronisation constraints (i.e in the sets of polyhedra Pi) are eliminated from the constraints using a
variable change.

5.2.1 Case of 2 polyhedra

Let us consider the couple of paths π = I1t1 . . . In−1tn−1.Iptp.Intn (from the system) and π′ = I ′pt′p
(from the pattern) such that `(tp) = `(t′p) i.e tp and t′p are unobservable . As described in Section 4.2.2,
π can be partitioned into two blocks: w1 = I1t1 . . . Iptp and w2 = Intn. The polyhedra resulting from
the synchronization of w1 with w′1 = π′ and the constraint of w2 (see Section 4.2.3) are:

P1 = {d1 ∈ I1, . . . , dp ∈ Ip, (
n−1∑
j=1

di) + dp ∈ I ′p},P2 = {dn ∈ In}

The constraint on dp in P1 (i.e. on the firing date of tp) can be eliminated by the variable change
d′n = dp + dn, leading to two new polyhedra Po,1 and Po,2, with constraints related to firing dates of
observable transitions only:

Po,1 = {d1 ∈ I1, . . . , d
′
n ∈ (Ip + In), (

n−1∑
j=1

di) + d′n ∈ I ′p + In} (3)

Po,2 = {d′n ∈ Ip + In} (4)

Proposition 4. (1) Let ro be a sequence of observable transitions and their dates of firing satisfying
(Po,1,Po,2). There exists r a run of π such that PToΘ

(r) = ro and r |= (P1,P2).
(2) Let r be a run of π such that r |= (P1,P2), then PToΘ(r) |= (Po,1,Po,2).

5.2.2 Generalisation

The transformation process described for a synchronisation step leading to two sets of synchronisation
constraints (i.e two polyhedra) (Section 5.2.1) can be generalized to the case of a sequence of n poly-
hedra (P1, . . .Pn). For this the variable change is applied as many times as the number of constraints
that relate only to an unobservable transition in the sequence.

More precisely, the variable change is applied to the first polyhedron of the sequence and then
propagated from one polyhedron to another until the end of the sequence .

According to Definition 10 and Proposition 3 two applications of translation, Trans1 and Trans2,
are defined:

11
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Definition 11. Trans1: C × C → C and Trans2: C × C → C such that:

• Trans1(P1,P2) =

1. Po,1 if (P1,P2) ∈ (Co∗u× (Co∗u \Cu))∪ (Co∗u×Co) where Po,1 is obtained processing the

variable change d′n = dp+dn inP1 = {d1 ∈ I1, . . . dn−1 ∈ In−1, dp ∈ Ip, (
n−1∑
j=1

dj)+dp ∈

I ′p}, with P2 = {dn ∈ In, . . .} (see 3)

2. ∅ if (P1,P2) ∈ (C × Cu) ∪ (∅ × C)

• Trans2(P1,P2) =

1. Po,2 if (P1,P2) ∈ (Co∗u× (Co∗u \Cu))∪ (Co∗u×Co) where Po,2 is obtained processing the
variable change d′n = dp + dn in P2 = {dn ∈ In, . . .}, with P1 = {d1 ∈ I1, . . . dn−1 ∈

In−1, dp ∈ Ip, (
n−1∑
j=1

dj) + dp ∈ I ′p} (see 4)

2. Po,1 if (P1,P2) ∈ (C × Cu) where Po,1 is obtained processing the variable change d′p2
=

dp1
+ dp2

in P1 = {d1 ∈ I1, . . . dn−1 ∈ In−1, dp1
∈ Ip1

, (
n−1∑
j=1

dj) +dp1
∈ I ′p1

} with

P2 = {dp2
∈ Ip2

∩ I ′p2
} (see 3)

3. ∅ if (P1,P2) ∈ ∅ × C

When the variable change is applied to the first polyhedron of the sequence the assigned variable
appears in the second polyhedron as well. Then as the unobservable constraints of this polyhedron need
another variable change, the application P (P1, . . . ,Pn) =(Trans1(P1,P2), P (Trans2(P1,P2),P3, . . .
Pn)) is the application that propagates the variable changes towards a sequence of polyhedra (if n = 2
P (P1,P2) = (Trans1(P1,P2),Trans2(P1,P2)).

Proposition 5. Let (Pi)i∈[1,n] be the sequences of polyhedra resulting from the synchronisation of π
with π′. Let’s also consider (Po,j)j∈[1,n] such that (Po,j)j∈[1,n] = P (P1, . . . ,Pn).

1. ∀ro such that ro |= (Po,j)j∈[1,n], there exists r such that PΣo(r) = ro and r |= (Pi)i∈[1,n].

2. ∀r such that r |= (Pi)i∈[1,n], PΣo(r) |= (Po,j)j∈[1,n].

Proof. By developing the application P , we have P (P1, . . . ,Pn) =(Trans1(P1,P2), P (Trans2(P1,
P2) ,P3, . . .Pn)) = (Trans1(P1,P2),Trans1(Trans2(P1,P2),P3), P (Trans2(Trans2(P1,P2),P3),
P4, . . .Pn)). Every Po,j , j ∈ [1, n] will be a succession of applications of Trans2 (j−1) times and one
application of Trans1. Then by recurrence on Trans2 it can be shown that the variable change induced
by (j− 1) applications of Trans2 does not affect the observable dates of the observable transitions, and
then points 1 and 2 are true.

We denote Πo = ∪nj=1Po,j the set of polyhedra resulting from the translation of the synchronisation
constraints of path.

Example 12. The synchronisation of π with π′ leads to the sequence (P1,P2,P3) where P1 = {2 ≤
d1 ≤ 6, 3 ≤ dp1

≤ 7, 6 ≤ d1 + dp1
≤ 9},P2 = {4 ≤ dp2

≤ 6},P3 = {1 ≤ d2 ≤ 2, 1 ≤ d3 ≤ 3}. The
application of P to (P1,P2,P3) is explicited:

• P (P1,P2,P3) = (Trans1(P1,P2), P (Trans2(P1,P2),P3) =
(Trans1(P1,P2),Trans1(Trans2(P1,P2),P3),Trans2(Trans2(P1,P2),P3))
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• Trans1(P1,P2) = ∅ because P2 ∈ Cu

• Trans2(P1,P2) = {2 ≤ d1 ≤ 6, 3 + 4 ≤ dp1
+ dp2

≤ 9 + 6, 6 + 3 ≤ d1 + dp1
+ dp2

≤ 9 + 6}
= {2 ≤ d1 ≤ 6, 7 ≤ d′p2

≤ 9, 9 ≤ d1 + d′p2
≤ 15}

• Trans1(Trans2(P1,P2),P3) = {2 ≤ d1 ≤ 6, 8 ≤ d2 ≤ 15, 10 ≤ d1 + d2 ≤ 17}

• Trans2(Trans2(P1,P2),P3) = {8 ≤ d2 ≤ 15, 1 ≤ d3 ≤ 3}

The translation into observable constraints of the synchronisation constraints of the path π1 is
(Po,1,Po,2,Po,3) with: Po,1 = ∅, Po,2 = {2 ≤ d1 ≤ 6, 8 ≤ d2 ≤ 15, 10 ≤ d1 + d2 ≤ 17},
Po,3 = {8 ≤ d2 ≤ 15, 1 ≤ d3 ≤ 3}.

6 Finite characterization of the pattern Signature
As it as been shown previously, it is possible for a path to represent the first occurrences of the pattern
as a set of observable constraints. Repeating this operation as many times as the number of paths for
which there exists at least one run that matches the pattern, leads to the signature of the pattern for the
system.

Let us consider π1, . . . πn the n paths of the SCG of the system Θ that correspond to the different
recognitions of Ω (see Section 4.2.1) . For each πi, i ∈ [1, n], the set of constraints issued from the
synchronisation of πi with Ω translate into observable constraints plus the admissibility constraints of
πi is denoted Πi (Πi = Πo

i + Πa
i ).

To each solution Xs of Πi is associated a sequence of dates/transitions, as each variable in the
inequations of Πi is related to an observable transition, and the order of the inequations gives us a par-
ticular transition sequence. In other words, every πi has a sequence of observable transitions associated
denoted T io . Let us denote Π = ∪ni=1Πi the set containing every set of constraints representing the
occurrence of Ω in Θ.

Proposition 6. Xs = {θ1, . . . θk} is solution of Π = ∪ni=1Πi ⇔ ∃i ∈ [1, n] | ro = θ1t1 . . . θktk, T io =
t1.t2 . . . tk is such that ρo = θ1`(t1) . . . θk`(tk) ∈ Sig(Ω).

Proof. (⇒) Let’s consider i ∈ [1, n] and Xs = {θ1, . . . θk}, T io = t1.t2 . . . tk a solution of Πi. ro
is an admissible observable run of Θ because its transition sequence comes from the system and ro
satisfies the admissibility constraints of the system (Πa

i ⊆ Πi). ro also satisfies Πo
i thus by Proposition

5 there exists a run r of Θ such that r c Ω and PToΘ
(r) = ro. So if ro = θ1t1 . . . θktk, so ρo =

θ1`(t1) . . . θk`(tk) ∈ Sig(Ω).
(⇐) If ρo = θ1`(t1) . . . θk`(tk) ∈ Sig(Ω) there exists a run r of Θ such that r c Ω and ro =

θ1t1 . . . θktk = PToΘ(r). Thus by Propositions 2 and 5 there exists Πi, i ∈ [1, n] representing this run.
Thus Xs the set of dates of ρo is a solution of Πi.

Proposition 6 shows that there exists a finite set of constraints characterizing Sig(Ω), and so there
exists a finite characterization of Sig(Ω).

Example 13. There are 6 paths in the SCG of Θ1 for which it is possible to match Ω1:
π1 = tuo1 .t1.tp1 .tuo2 .tp2 .t2.tuo3 .t3, π2 = tuo1 .t1.tp1 .tuo2 .tuo3 .t3.tp2 .t2, π3 = tuo1 .t1.tp1 .tuo2 .
tp2 .tuo3 .t3.t2, π4 = tuo1 .t1.tp1 .tuo2 .tp2 .tuo3 .t2.t3, π5 = tuo1 .t1.tp1 .tuo2 .tuo3 .tp2 .t3.t2 and π6 =
tuo1

.t1.tp1
.tuo2

.tuo3
. tp2

.t2.t3.
Π the set of constraints characterizing the recognition of Ω1 toward Θ1 is : Π = {
Π1 = {2 ≤ d1 ≤ 6, 8 ≤ d2 ≤ 15, 10 ≤ d1 + d2 ≤ 17, 1 ≤ d3 ≤ 3, 7 ≤ d2 + d3 ≤ 15},
Π2 = {2 ≤ d1 ≤ 6, 9 ≤ d3 ≤ 15, 12 ≤ d1 + d3 ≤ 17, 1 ≤ d2 ≤ 5, 7 ≤ d2 + d3 ≤ 13},
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Π3 = {2 ≤ d1 ≤ 6, 10 ≤ d3 ≤ 15, 12 ≤ d1 + d3 ≤ 19, 0 ≤ d2 ≤ 1, 7 ≤ d2 + d3 ≤ 17},
Π4 = {2 ≤ d1 ≤ 6, 7 ≤ d2 ≤ 17, 9 ≤ d1 + d2 ≤ 19, 0 ≤ d3 ≤ 2, 7 ≤ d2 + d3 ≤ 15},
Π5 = {2 ≤ d1 ≤ 6, 7 ≤ d3 ≤ 15, 9 ≤ d1 + d3 ≤ 17, 0 ≤ d2 ≤ 4, 7 ≤ d2 + d3 ≤ 17},
Π6 = {2 ≤ d1 ≤ 6, 8 ≤ d2 ≤ 15, 10 ≤ d1 + d2 ≤ 17, 0 ≤ d3 ≤ 1, 7 ≤ d2 + d3 ≤ 15}}

7 Conclusion
This paper develops a method to characterize in a finite way the signature of a timed pattern in an
acyclic safe Time Petri Net. The proposed characterization is constructive and is divided into two main
steps. First, the executions of the system containing the pattern are synchronized with the pattern itself.
The synchronizations are based on the state class graph of the system and are formulated as a pattern
matching problem. The synchronized executions are then represented as sets of constraints on the firing
dates of the system transitions. In a second step, these constraint sets are transformed into observable
constraints, i.e. constraints on the dates of the system observable transitions that must be satisfied so
that the pattern occurs.

Future work includes the extension of this characterization to a larger number of systems and differ-
ent types of patterns, for example pattern with parallelism. Another challenging issue is the signature
based diagnosability. The comparison of the signature of the pattern and the signature of the non-
occurence of the pattern could be investigated. Finally, in the case where the pattern is not diagnosable,
the signature can be relevant to identify why the pattern is not diagnosable in order to repair the system.
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